
FusionFS: A Contention-Resilient File System for Persistent 
CPU Caches 
CONGYONG CHEN, Shanghai Jiao Tong University, Shanghai, China 

SHENGAN ZHENG, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, 

Shanghai, China 

YUHANG ZHANG, Shanghai Jiao Tong University, Shanghai, China 

LINPENG HUANG, Shanghai Jiao Tong University, Shanghai, China 

Byte-addressable storage (BAS), such as persistent memory and CXL-SSDs, does not meet system designers’ 
expectations for data flushing and access granularity. Persistent CPU caches, enabled by recent techniques 
like Intel’s eADR and CXL’s Global Persistent Flush, can mitigate these issues without sacrificing consistency. 
However, the shared nature of CPU caches can lead to cache contention, which can result in cached data being 
frequently evicted to the BAS and reloaded into caches, negating the benefits of caching. If the BAS write 
granularity is larger than the cacheline eviction granularity, this can also lead to severe write amplification. 

In this article, we identify, characterize, and propose solutions to the problem of contention in persistent 
CPU caches, which is largely overlooked by existing systems. These systems either simply assume that cached 
data is hot enough to survive cache evictions or use unsupported cache allocation techniques without testing 
their effectiveness. We also present FusionFS, a contention-resilient kernel file system that uses persistent 
CPU caches to redesign data update approaches. FusionFS employs an adaptive data update approach that 
chooses the most effective mechanism based on file access patterns during system calls and memory mapping 
accesses, minimizing BAS media writes and improving throughput. FusionFS also employs contention-aware 
cache allocation to minimize various types of cache contention. Experimental results show that FusionFS 
outperforms existing file systems and effectively mitigates various types of cache contention. 

CCS Concepts: • Hardware → Non-volatile memory; Memory and dense storage; •  Software and its 
engineering → File systems management; 

Extension of Conference Paper [9]. In this new manuscript, (1) we identify, characterize, and propose solutions to several 
types of cache contention that are largely overlooked by existing systems and can offset the benefits of persistent CPU 
caches. (2) Following our proposed guidelines, we introduce contention-aware cache allocation to mitigate various types 
of cache contention in the kernel space. (3) We extend adaptive data update with L3_CAT-based dedicated-cache update 
and a hotspot detector that automatically limits hot data within the dedicated cache capacity. (4) We add experiments to 
demonstrate that FusionFS is resilient to cache contention. (5) We discuss the generality of our work and compare it to 
related work. 
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1 Introduction 

Byte-addressable storage (BAS), such as Intel Optane PM [28] and  Compute Express Link 
(CXL)-SSDs [49, 59], combines the byte addressability of DRAM with the durability of disk stor-
age, enabling system designs with high throughput and low persistence overhead. However, com-
mercially available BAS products do not meet the expectations of system designers in terms of 
data flushing and access granularity [11, 38, 58]. Applications must issue flush instructions and 
memory barriers on platforms with volatile CPU caches (e.g., ADR-based platforms) to guarantee 
data persistence. This results in prolonged critical path latency and high consumption of limited 
BAS write bandwidth. Moreover, BAS often has a large access granularity (e.g., 256 B for Optane 
PM [58] and 16 KB for CXL-SSDs [59, 65]) that mismatches with CPU caches’ cacheline access 
granularity (64 B), causing small random writes to trigger additional read-modify-write traffic. 

Existing systems often adopt expensive data update approaches to overcome these limitations. 
These approaches are mainly based on three types of mechanisms: (1) active-flush update eagerly 
persists data synchronously with flush instructions and memory barriers [15, 45, 56, 57], (2) non-
temporal update writes data to BAS directly bypassing CPU caches [13, 35], (3) asynchronous up-
date buffers data in DRAM and persists updates asynchronously [14, 19, 45, 67, 68]. Synchronous 
updates, including active-flush update and non-temporal update, lead to high data persistence over-
head on the critical path and write amplification for accesses with mismatched granularity, while 
asynchronous update cannot guarantee immediate data consistency. 
Fortunately, recent cache persistence techniques (e.g., Intel’s eADR [27], battery-backed 

cache [1], CXL’s Global Persistent Flush [10]) enable automatic data flushing from CPU caches 
to BAS during power failures. In addition, CPU L3 caches are large and have grown rapidly in 
recent years, as shown in Figure 1. By leveraging persistent CPU caches, data update mechanisms 
originally designed for volatile data structures can be applied to update persistent data. These 
mechanisms include: (1) dedicated-cache update allocates a dedicated cache space within persistent 
CPU caches for BAS systems [70], (2) in-place update does not explicitly issue flush instructions 
after writes [33, 46, 60, 63]. 

Despite these advances, CPU caches are shared by BAS, DRAM, and I/O devices [26] and have  
limited cache ways, leading to cache contention that can offset or even reverse the benefits of per-
sistent CPU caches. Cache contention can be divided into two main categories: internal contention 
and external contention. Internal contention occurs even when no other workloads are running and 
includes: (1) BAS-BAS contention, which occurs when the BAS working set size (WSS) exceeds 
the cache capacity [33, 63, 70], (2) DRAM-BAS contention, which occurs when the DRAM accesses 
of the BAS systems evict cached BAS data, (3) set contention, which occurs in set-associative caches 
when multiple memory accesses compete for the same cache set, resulting in cache evictions even 
when the cache isn’t full. External contention occurs when other workloads are running alongside 
the BAS system and includes (4) interfering process contention, which refers to the competition for 
cache space between BAS systems and other unrelated interfering processes, and (5) I/O contention, 
which occurs when I/O devices compete with BAS systems for cache space. 

However, existing BAS systems, including those based on cache persistence techniques, fail to 
fully harness the potential of persistent CPU caches. For data updates, systems with volatile caches 
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Fig. 1. Maximum L3 cache sizes in recent processor generations. 

Table 1. Effectiveness of BAS Systems’ Cache Contention Mitigation Techniques 

Kernel Space 
Support 

Internal External 
BAS-BAS DRAM-BAS Set Interfering Process I/O 

Remove All Flush [46, 60] ✓ ✗ ✗ ✗ ✗ ✗
Flush Cold Data [33, 63] ✓ ✓ ✗ ✗ ✗ ✗
Cache Pseudo-Locking [24, 70] ✗ ✗ ✗ ✗ ✗ ✗
Naive L3_CAT [31] ✗ ✗ ✗ ✗ ✓ ✗
FusionFS ✓ ✓ ✓ ✓ ✓ ✓

use active-flush/non-temporal update to ensure consistency. On platforms with persistent caches, 
file systems completely switch to in-place update to avoid persistence overhead [60]. Such a fixed 
approach can lead to BAS-BAS contention due to the large BAS WSS of the system. Moreover, 
existing systems are ineffective at mitigating contention types other than BAS-BAS contention, as  
shown in Table  1. This results in cached data being frequently evicted to BAS and reloaded into 
caches, negating the benefits of caching. Worse yet, if the write granularity of BAS is larger than 
the cacheline eviction granularity, it can lead to severe write amplification, as writes larger than a 
cacheline may be split into multiple cacheline-sized random writes due to the cacheline eviction 
policy (e.g., LRU algorithm) [18]. 
In this article, we identify, characterize, and propose solutions to several types of cache con-

tention that remain challenging for existing systems. We then propose FusionFS, a contention-
resilient kernel file system that harnesses persistent CPU caches to optimize data updates. The 
key observation is that different data update mechanisms have their own applicable file access pat-
terns. Therefore, FusionFS uses an adaptive data update approach to dynamically select the most 
appropriate data update mechanism based on file access patterns (e.g., data hotness, update size, 
and consistency requirements). Writes to large (≥4KB) hot data and small (≤64B) cold data are 
stored in persistent CPU caches to improve throughput and reduce BAS bandwidth consumption. 
For memory mapping accesses, FusionFS omits flush instructions for hot data during synchro-
nization calls (e.g., msync) to minimize writes to BAS. For hot data with relaxed consistency, Fu-
sionFS buffers writes to DRAM and persists them during synchronization calls. Remaining writes 
go directly to BAS so that neighboring cacheline evictions can be aggregated in its internal buffer. 
FusionFS uses a scalable 2Q-LRU approach to transparently measure data hotness. For memory 
mapping accesses that bypass the file system to access BAS directly, FusionFS adopts a page fault-
based profiling approach where data page permissions are periodically adjusted to catch the next 
access and add it to the appropriate queue. 
FusionFS uses a contention-aware cache allocation approach to mitigate various types of cache 

contention. FusionFS offloads dedicated-cache updates to L3_CAT-protected kernel threads to 
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mitigate DRAM-BAS contention and support L3_CAT in kernel space. To mitigate set contention, 
FusionFS leaves some headroom in dedicated caches. In addition, FusionFS spreads file data across 
kernel threads of different NUMA nodes to utilize CPU caches from multiple nodes and preferen-
tially allocates caches not used by DCA to avoid I/O contention. 

In summary, the contributions of this article include: 

— We perform an in-depth analysis of the impact of persistent CPU caches on BAS, highlighting 
their potential in optimizing the data update approaches of existing systems. 

— We identify, characterize, and propose solutions to several types of cache contention that are 
largely overlooked by existing systems and can offset the benefits of persistent CPU caches. 

— We propose FusionFS, a kernel file system that integrates adaptive data update and 
contention-aware cache allocation to improve throughput and reduce BAS bandwidth 
consumption. 

— We implement FusionFS as a POSIX-compliant kernel file system for Linux. Performance 
results show that FusionFS outperforms existing file systems and effectively mitigates 
various types of cache contention. The source code of FusionFS is publicly available at 
https://github.com/SJTU-DDST/FusionFS. 

2 Background and Motivation 

2.1 Impact of Persistent CPU Caches on BAS 

BAS offers many attractive features that are changing the design of storage systems, including 
file systems, databases, and key-value stores. It can be accessed by the CPU in a DRAM-like byte-
addressable manner but has lower bandwidth and higher latency. It also offers disk-like endurance 
and large capacity. There are several types of BAS, such as Intel’s Optane PM [28] and  CXL-
SSDs [49, 59]. Apart from these fundamental features, we highlight two other observations on 
platforms with persistent CPU caches that prevent existing systems from fully leveraging BAS 
performance. 
Observation 1: Access pattern determines how flush operations affect performance. On 

platforms with volatile CPU caches (e.g., ADR-based platforms [21]), it is necessary to proactively 
flush data into BAS or bypass CPU caches (e.g., clwb and ntstore) and use memory barriers to 
guarantee data persistence. Recent cache persistence techniques allow automatic flushing of data 
from CPU caches to the BAS during power failures. By omitting flush instructions, writes to the 
hot BAS region can be absorbed by CPU caches, effectively reducing BAS bandwidth consumption 
without compromising data consistency. 

However, simply removing the flush instructions does not fully exploit the potential of persis-
tent CPU caches because the BAS WSS can exceed the cache capacity, so cached data is often 
evicted to the BAS and reloaded into caches. In addition, CPU caches are shared by BAS, DRAM, 
and I/O devices [26], further exacerbating cache contention. In contrast, explicitly issuing flush in-
structions for cold data not only allows BAS to aggregate large sequential writes to the cold region 
in its internal buffer [58] but also reduces BAS WSS. 

Consequently, with the presence of persistent CPU caches, applications gain the flexibility to 
decide whether to use flush instructions based on access patterns. 
Observation 2: Data access granularity affects BAS bandwidth consumption. The BAS of-

ten has a large access granularity (e.g., 256 B for Optane PM [58] and 16 KB for CXL-SSDs [59, 65]) 
that does not match the access granularity of CPU caches (64 B). We refer to these access granu-
larity blocks as XPLine. This mismatch makes small random writes to the BAS inefficient because 
they are converted to accesses with access granularity, resulting in write amplification [58]. There-
fore, accessing the BAS with blocks matched to its access granularity can maximize the use of BAS 
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Fig. 2. BAS data update mechanisms. 

bandwidth. In addition, persistent CPU caches allow multiple small writes to be aggregated before 
being written to BAS, effectively mitigating write amplification. 

As a result, the two observations that hinder systems from fully harnessing BAS performance 
can be mitigated through the use of persistent CPU caches. 

2.2 Data Update Approaches 

With the introduction of persistent CPU caches, mechanisms originally designed for updating 
volatile data can now be repurposed for updating persistent data. Figure 2 shows five existing data 
update mechanisms. 
Dedicated-Cache Update. Dedicated-cache update allocates a dedicated cache space within 

persistent CPU caches for BAS systems using cache allocation technologies (e.g., Intel’s Cache Al-
location Technology [20], AMD’s Platform Quality of Service [2], and ARM’s Memory Partitioning 
and Monitoring [4]) [70]. This reduces BAS bandwidth usage by mitigating cache contention, and 
cached data is automatically persisted to BAS during a power outage. 
Cache allocation technologies include two related features: Cache Pseudo-Locking and L3_CAT. 

Cache Pseudo-Locking [24], supported only by Intel, is not architecturally supported after the 
Broadwell generation released in 2014 [22, 23]. L3_CAT supports recent CPUs of various brands 
(e.g., Intel CPUs since Xeon E5 v3 [31], AMD CPUs since EPYC Rome [44], and ARM CPUs [5]) 
through Linux’s resctrl interface [25] but has different characteristics. To our knowledge, no 
other BAS system has used L3_CAT to mitigate cache contention. 
Unlike Cache Pseudo-Locking, which locks memory segments in the caches, L3_CAT allocates a 

portion of the caches to L3_CAT groups that contain specific PIDs or CPU cores. Processes can only 
allocate cachelines to their assigned LLC ways but can still load/update cachelines from all LLC 
ways. Programmers can take advantage of L3_CAT by simply accessing the appropriate Model-

Specific Registers (MSRs) or using high-level libraries [31]. Furthermore, dynamic mechanisms 
can be built on top of it [61]. 
However, L3_CAT can only isolate cache usage from other processes and does not completely 

avoid cache contention. In addition, due to ID-based allocation, L3_CAT cannot directly affect 
kernel-level operations. This is because system calls run on the CPU core that initiates the call, 
which is not fixed, and they do not belong to any PID. A workaround is to use L3_CAT to protect 
all processes that initiate system calls, but this greatly expands the system’s WSS by including 
the WSS of all writer processes, potentially exceeding cache capacity. Dedicated-cache update is 
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suitable for updating hot data when there are concurrent interfering processes, but its effectiveness for 
kernel and other types of cache contention remains to be addressed. 
In-Place Update. In-place update omits issue flush instructions after writes, as these operations 

are no longer needed to ensure consistency with cache persistence techniques. This mechanism 
minimizes update latency by reducing synchronous data persistence overhead [33, 46, 60, 63]. The 
bandwidth consumption of this mechanism varies depending on the access pattern. On the one 
hand, when updating hot data, it uses CPU caches to buffer multiple writes to the same XPLine 
(Step 1 in Figure 2). On the other hand, for cold data exceeding one cacheline (>64B), it can result in 
write amplification due to the cacheline eviction policy (Step 2 in Figure 2). Worse, it is susceptible 
to interference from offending applications that frequently request large amounts of data but rarely 
reuse the cached data, such as file hosting and video streaming programs [20]. In-place update is 
suitable for updating small (≤ 64B) cold data, as well as for updating hot data when there are no 
interfering processes. 
Active-Flush Update. Active-flush update explicitly issues flush instructions after writes to 

proactively flush data into BAS, coupled with memory barriers for immediate data persistence. It 
is a widely adopted mechanism in ADR-based systems [15, 45, 56, 57] to ensure consistency. Al-
though flushing becomes unnecessary for consistency, active-flush update prevents random cache-
line eviction by aggregating large writes in the internal buffer and writing them to BAS sequen-
tially, mitigating write amplification. However, it cannot alleviate write amplification if the access 
size is within a cacheline (Step 3 in Figure 2). Active-flush update is suitable for updating cold data 
with more than one cacheline (>64B). 
Non-Temporal Update. Non-temporal update directly writes data to BAS, bypassing CPU 

caches using non-temporal write instructions. Like active-flush update, it is widely used by ADR-
based systems [13, 35] to ensure data consistency. Compared to active-flush update, it exhibits 
lower latency and higher bandwidth by avoiding loading data into CPU caches [58]. Non-temporal 
update is suitable for updating cold data with more than one cacheline (>64B). 

Asynchronous Update. Asynchronous update buffers writes in DRAM and persists them asyn-
chronously. This mechanism effectively reduces critical path latency and BAS bandwidth usage, 
but also introduces the risk of data loss during power failures [45, 55, 67, 68]. To obtain immedi-
ate persistence in file system access, applications must explicitly call fsync() to synchronously 
persist previously buffered writes to BAS. Asynchronous update is only suitable for scenarios with 
relaxed consistency requirements. 
These update mechanisms provide different choices for updating data in BAS, and their effec-

tiveness depends on the access pattern. To optimize performance, it is essential to dynamically 
choose the most suitable mechanism according to the access pattern. However, current BAS sys-
tems do not adaptively determine the appropriate data update mechanism according to the access 
pattern, instead adhering to a rigid approach. 

3 Characterization of BAS-related Cache Contention 

In this section, we specifically identify and characterize several types of cache contention 
that remain challenging for existing BAS systems to mitigate, including DRAM-BAS contention 
(Section 3.1), set contention (Section 3.2), interfering process contention (Section 3.3), and I/O con-
tention (Section 3.4). Such contention (1) causes cached data to be frequently evicted to BAS and 
reloaded into caches, negating the benefits of caching, and (2) can lead to write amplification if 
the write granularity of the BAS is large. Despite its importance, the issue of cache contention has 
been largely overlooked in existing BAS systems. Therefore, we present a set of guidelines aimed 
at mitigating each type of contention. 
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Fig. 3. Cache miss rates and I/O amplification when the process overwrites a BAS buffer of the same size as 
the allocated caches (21 MB) and a DRAM buffer of variable size. 

3.1 DRAM-BAS Contention 

DRAM-BAS contention occurs when the combined cache requirements of a BAS system’s DRAM 
and BAS exceed the available cache capacity, resulting in competition for cache resources. Some 
BAS systems flush cold data to limit BAS WSS to prevent BAS-BAS contention [33, 63], but the 
systems’ DRAM accesses can also compete for cache space. To understand the effects of DRAM-BAS 
contention, we perform an experiment on the platform described in Section 5.1. In the experiment, 
the process simultaneously overwrites both a BAS buffer of the same size as the allocated caches 
and a DRAM buffer of variable size. The BAS buffer is allocated via memory mapping on the ext4-
DAX file system. We monitor results using perf for cache miss rates and ipmctl for BAS media 
writes. L3_CAT with flush is used as the baseline for I/O amplification. Test results are consistent 
for both sequential and random access patterns and for 32 B/4 KB access sizes. 

Our results, shown in Figure 3, show a direct correlation between the DRAM buffer size and 
the increase in I/O amplification. Specifically, when the DRAM buffer size reaches 7 MB, I/O am-
plification is about 1, meaning that BAS writes catch up with the bandwidth to flush all writes. 
The results highlight a critical challenge for BAS systems: they often store recoverable metadata 
in DRAM to speed up accesses, but as the metadata grows, DRAM accesses can often evict cached 
BAS data. In addition, using L3_CAT to isolate kernel file systems by protecting all processes 
that initiate system calls becomes impractical due to the DRAM accesses of these processes. In-
stead, proactively calling flush instructions after DRAM accesses (active-flush update) or using 
ntstore to access DRAM (non-temporal update) can effectively limit DRAM WSS and thus mitigate 
DRAM-BAS contention. 
Guideline 1: BAS systems can use active-flush/non-temporal updates for DRAM ac-

cesses to minimize the eviction of cached BAS data caused by DRAM accesses. 

3.2 Set Contention 

Set contention occurs in set-associative caches when multiple memory accesses compete for the 
same cache set, resulting in cache evictions even when the cache isn’t full. In modern CPUs, the L3 
caches are segmented into numerous sets, with each set consisting of multiple ways. For example, 
Intel Xeon Gold 6348 equipped on our platform has 57,344 sets with 12 ways per set [29]. One 
cache way corresponds to one twelfth of the L3 caches, or 3.5 MB caches. Physical addresses are 
mapped to free ways in the corresponding set using a hash function. This architecture is intended 
to speed up cache access, but severely limits the number of ways per set, which can lead to set 
contention as the WSS approaches cache capacity. Set contention exists even without L3_CAT, and 
is exacerbated in L3_CAT-protected systems because L3_CAT imposes an additional limit on the 
number of cache ways the system can access. 
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Fig. 4. Cache miss rates and I/O amplification when the process writes to a BAS buffer of variable size for 
various L3_CAT configurations. 

We design an experiment to evaluate the impact of set contention on BAS systems. Specifically, 
we allocate either 10 cache ways (35 MB) or 2 cache ways (7 MB) of cache to the process. This 
setup allows us to highlight the increased severity of set contention when fewer cache ways are 
available. The process then overwrites a variable-sized BAS buffer. Our results, shown in Figure 4, 
show that the cache miss rate remains low as long as the size of the cached data is smaller than 
the allocated cache size by at least one cache way (3.5 MB). However, as the available cache ways 
continue to decrease and there is less than one cache way available, the cache miss rate begins 
to increase, indicating increased set contention. This contention increases as the available cache 
capacity decreases. Figure 4(b) shows that when only two cache ways are allocated and the size 
of the cached data is equal to the allocated cache size, BAS writes can reach half the bandwidth to 
flush all writes. 
Another of our findings is that using devdax mode to allocate BAS buffers can reduce BAS writes 

caused by set contention by approximately 50%. This significant reduction is due to devdax’s ability 
to provide more raw access to BAS, making it easier for an application to guarantee alignment for 
large pages. This finding is crucial because set contention can be exacerbated by an unfavorable 
access pattern to the cache’s hash function, leading to an imbalance in set utilization [16, 50]. 
Guideline 2: BAS systems can mitigate set contention by reserving at least one cache 

way in the dedicated cache, or by using devdax mode to balance set usage. 

3.3 Interfering Process Contention 

Interfering process contention refers to the competition for cache space between BAS systems and 
other interfering processes unrelated to BAS. Early systems based on persistent CPU caches [46, 
60] omit flush instructions after writes without considering that interfering processes may evict 
cached BAS data. Recent systems [33, 63, 70] attempt to address this by flushing cold data and 
assuming that cached data is hot enough to survive cache contention. However, cache eviction 
strategies on Intel CPUs are undocumented and not simply hotness-based [8],  and it is difficult to  
guarantee that cached BAS data is hotter than data from other processes. The deprecated Cache 
Pseudo-Locking and its successor L3_CAT are intended to reserve cache space for BAS systems, 
but their effectiveness remains to be tested. 
We conduct an experiment to evaluate the impact of interfering process contention on BAS sys-

tems. In our tests, the BAS system process overwrites a BAS buffer 100 times, while multiple inter-
fering processes overwrite their 100 MB private DRAM buffers. The BAS buffer size is set to match 
the maximum available cache size. For flushing cold data, this is the entire cache size (42 MB). Oth-
erwise, it is 11 of the 12 cache ways (38.5 MB), since we must reserve at least one cache way 
(3.5 MB) for other processes. This setup is designed to allow the BAS system to get the most out 
of the cache space while simulating a situation where the BAS data is hotter than the DRAM data 
due to the smaller BAS data. 
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Fig. 5. Cache miss rates and I/O amplification when the BAS system process overwrites a BAS buffer and 
various numbers of interfering processes overwrite private DRAM buffers under different cache contention 
mitigation approaches. 

As shown in Figure 5, our results indicate that neither flushing cold data nor using Cache Pseudo-
Locking effectively mitigates cache contention. Flushing cold data can reduce BAS writes in the 
absence of interfering processes, but even a single interfering process can significantly increase 
BAS writes, even exceeding the value when hot data is also flushed. Conversely, the deprecated 
Cache Pseudo-Locking tends to increase BAS writes even in the absence of interfering processes. 
As for L3_CAT, cache miss rates and I/O amplification are not significantly affected by interfering 
processes, but have a non-zero lower bound due to set contention. 
Guideline 3: BAS systems should use L3_CAT rather than unsupported Cache Pseodo-

Locking to isolate cached BAS data from cached DRAM data of interfering processes. 

3.4 I/O Contention 

I/O contention occurs when I/O devices compete with BAS systems for cache space, causing cache 
evictions even when cache is allocated to BAS systems with L3_CAT. This contention is caused 
by Direct Cache Access (DCA) technologies, such as Intel’s Data Direct I/O (DDIO) [32] and  
ARM’s Cache Stashing [6], which allow I/O devices to inject incoming I/O traffic directly into CPU 
caches instead of memory. In this article, we focus on Intel’s DDIO because it is the most widely 
used DCA technology. By default, DDIO can only allocate on the two leftmost LLC ways 1 [61] (i.e., 
the shareable ways), while it can update or read data from all ways. For DRAM systems, DDIO 
can improve system performance by reducing memory access latency and memory bandwidth 
consumption [54]. However, it inevitably evicts cachelines when caches are full and causes write 
amplification for BAS systems. Here we categorize I/O contention into two types, (1) intra-I/O con-
tention: multiple I/O requests compete for cache space in systems that access BAS with I/O devices 
(e.g., RDMA NICs [54], DMA engines [41]), and (2) system-I/O contention: BAS systems that do not 
use I/O devices compete for cache space with concurrent I/O requests. 
We evaluate the impact of system-I/O contention through experiments since we focus on mono-

lithic systems. Specifically, we allocate 7 MB of cache to the BAS system process, which over-
writes a 3.5 MB BAS buffer, while simultaneously performing DDIO-enabled DMA requests to 
write DRAM data on the same NUMA node. Our results, shown in Figure 6, indicate that allocat-
ing the shareable ways to the BAS system process significantly increases BAS writes, approaching 
the bandwidth to flush all data. In contrast, allocating other non-shareable ways results in near-
zero cache miss rates and BAS writes. This finding suggests that even when cache ways are made 
exclusive to BAS systems using L3_CAT, there is still I/O contention if the assigned ways overlap 

1This value is defined in a Model Specific Register (MSR) called “IIO LLC WAYS” at address 0xC8B and can be 
read/written using msr-tools (e.g., rdmsr and wrmsr). 
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Fig. 6. Cache miss rates and I/O amplification when the BAS system process writes to a 3.5 MB BAS buffer 
with 7 MB of different cache ways allocated. 

with shareable ways. Fortunately, L3_CAT can still be used to prohibit BAS systems from allocating 
cachelines in shareable ways to prevent I/O contention. 
A common approach in BAS systems is to disable DDIO for BAS-related I/O devices, which also 

persists data on platforms with volatile CPU caches. However, disabling DDIO is ineffective for 
system-I/O contention and platforms with persistent CPU caches. On the one hand, if DDIO is dis-
abled, incoming data will still be in the cache initially and will be flushed to memory immediately, 
potentially evicting cached BAS data when the cache is full [61]. On the other hand, on platforms 
since Ice Lake, all DDIO-related registers are read-only [47]. Some vendors offer a workaround to 
globally disable DDIO by disabling Intel Virtualization Technology (Intel VT) in the BIOS. How-
ever, this workaround has significant drawbacks: (1) it severely degrades I/O performance when 
accessing DRAM, (2) it disables other virtualization features, potentially impacting system func-
tionality, and (3) not all vendors support this option. As a result, simply disabling DDIO is an 
impractical solution for mitigating system-I/O contention or adapting to modern platforms. 
Guideline 4: When DCA is enabled, BAS systems should use L3_CAT to avoid using 

shareable ways. 

4 Design and Implementation 

In this section, we introduce FusionFS, a contention-resilient kernel file system that exploits persis-
tent CPU caches to redesign data update approaches. We propose an adaptive data update approach 
to select the optimal data update mechanism from the five update mechanisms based on access 
patterns (Section 4.1). Following our guidelines, we propose a contention-aware cache allocation 
approach to prevent various types of cache contention (Section 4.2). 

4.1 Adaptive Data Update 

In this section, we first introduce the update policy of FusionFS during system call accesses 
(Section 4.1.1) and memory mapping accesses (Section 4.1.2), as shown in Figure 7.We then present  
the scalable 2Q-LRU and page fault-based profiling approaches, which transparently measure data 
hotness even for memory mapping accesses that bypass the file system to access BAS directly 
(Section 4.1.3). 

4.1.1 System Call Accesses. FusionFS selects the most suitable data update mechanism based on 
access patterns during system call accesses (e.g., write). For large (≥4KB) hot data, FusionFS uses 
dedicated-cache update to buffer writes in persistent CPU caches. This is especially effective for 
hot data that is likely to be accessed again before eviction, reducing writes to BAS and leveraging 
the benefits of cache hits. In addition, dedicated-cache update can protect these data segments 
from interfering process contention. For small (<4KB) hot data, FusionFS uses non-temporal update 
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Fig. 7. Update policy of FusionFS. 

because it has higher bandwidth for I/O sizes less than 4 KB. For hot data with relaxed consistency, 
including recoverable data and data flagged as relaxed consistent by the user, FusionFS chooses 
asynchronous update to buffer writes in DRAM and persist them asynchronously, avoiding write 
amplification and leveraging DRAM’s high performance. 
For small (≤64B) cold data, FusionFS uses in-place update to minimize the cost of explicit flush 

instructions, since actively flushing a single cacheline will not mitigate write amplification. Con-
versely, for large (>64B) cold data, FusionFS employs non-temporal update rather than active-flush 
update due to its lower latency and higher bandwidth. 

4.1.2 Memory Mapping Accesses. Memory-mapped file support is critical because mmap is an 
important method for accessing BAS that allows applications to achieve near-native BAS perfor-
mance. While some BAS-aware applications use flush instructions during mmap accesses, legacy 
applications still rely on synchronization calls to flush data. 
FusionFS extends support for the adaptive data update approach to memory-mapped files. For 

hot data, FusionFS uses in-place update by omitting flush instructions in synchronization calls to 
reduce writes to BAS. Dedicated-cache updates cannot be used because memory-mapped data is ac-
cessed by userspace processes, not the file system. For cold data, FusionFS uses active-flush update 
to aggregate the sequential writes in BAS’s internal buffer. For hot data with relaxed consistency, 
FusionFS uses asynchronous update by buffering data pages in DRAM and persisting them to BAS 
during synchronization calls. Since applications often synchronize the entire file regardless of the 
mmap write area, if a strictly consistent file has multiple full-file sync calls within a second, Fu-
sionFS will batch them into a single full-file sync to further reduce overhead. This does not affect 
consistency, thanks to persistent CPU caches. 

4.1.3 Hotspot Detector. We design a lightweight yet effective hotspot detector to measure the 
hotness of data pages during system call and memory mapping accesses without requiring code 
changes to user applications. 
Scalable 2Q-LRU. For system call accesses, we design a scalable 2Q-LRU algorithm to minimize 

cache thrashing. The 2Q-LRU algorithm uses two queues, the recent queue and the frequent queue. 
Data pages enter the recent queue on the first access and move to the frequent queue on subsequent 
visits. The algorithm uses a read-write semaphore to provide thread safety. Changes to the 2Q-LRU 
queues are cached in per-CPU buffers and bulked into the queues until they are full. The size of 
identified hot data is limited to avoid set contention. 

Page fault-based profiling. For memory mapping accesses, obtaining access information 
transparently is challenging because applications bypass the file system to access BAS directly. 
To address this, FusionFS adopts a page fault-based profiling approach. FusionFS periodically 
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adjusts the permissions of data pages in a background kernel thread. This allows the next access 
to be captured by the page fault handler function. The kernel thread then performs a translation 
lookaside buffer (TLB) shootdown and sends inter-processor interrupts (IPIs) to synchro-
nize the TLB across all CPUs. Finally, FusionFS appends captured mmap accesses to appropriate 
2Q-LRU queues for hot data detection. This process is only triggered once per profiling period for 
each page, so the overhead is negligible. 
By dynamically selecting the most effective mechanism based on access patterns, FusionFS op-

timizes data updates during system calls and memory mapping accesses. The adaptive approach 
of FusionFS ensures better BAS bandwidth utilization and lower latency across various scenarios, 
addressing the limitations observed in conventional approaches. 

4.2 Contention-aware Cache Allocation 

Following our guidelines in Section 3, we propose  isolated data access (Section 4.2.1), associativity-
friendly data layout (Section 4.2.2), and DCA-aware way allocation (Section 4.2.3) to address DRAM-

BAS, set, and  I/O contention, respectively. These designs also make L3_CAT effective for kernel 
space and allow FusionFS to use CPU caches of all NUMA nodes. 

4.2.1 Isolated Data Access. FusionFS addresses the challenges of DRAM-BAS contention and 
unsupported L3_CAT in kernel space by offloading dedicated-cache updates to L3_CAT-protected 
kernel threads. Kernel threads are actually processes cloned from process 0 (the swapper). Unlike 
system calls and user threads, kernel threads not only have their own PIDs, which are required 
for L3_CAT, but also have access to both the kernel and user address spaces [30, 48, 66, 71]. The 
unique feature of kernel threads allows them to copy data from user address space buffers to BAS 
located in the kernel address space, while protecting the cached BAS data from being evicted by 
other processes via L3_CAT, and isolating the kernel file system’s BAS WSS from the system and 
calling processes’ DRAM WSS. 
FusionFS uses several methods to reduce the overhead of offloading dedicated-cache updates to 

kernel threads. First, FusionFS assigns a fixed kernel thread to each BAS region according to the 
hash function of the address. This ensures that the same BAS region is always accessed by the 
same kernel thread, reducing the cache coherence overhead caused by multiple kernel threads 
on different CPU cores accessing the same BAS region. Second, FusionFS allocates private ring 
buffers to kernel threads to improve scalability. Third, FusionFS uses offloaded dedicated-cache 
updates only for large (≥4KB) hot data, since the overhead of offloading small data updates is non-
trivial according to the experimental results in Section 5.4. Finally, FusionFS performs the 2Q-LRU 
algorithm outside of the kernel threads to reduce kernel thread access to DRAM, thus mitigating 
DRAM-BAS contention. We also test a workaround that uses L3_CAT-protected kernel threads to 
load BAS data into dedicated CPU caches on the first access and then perform subsequent accesses 
directly without offloading. However, we find that after non-offloaded accesses, the cached data is 
no longer protected by L3_CAT and is vulnerable to interfering process contention. 

4.2.2 Associativity-friendly Data Layout. FusionFS leaves a one-way gap between the WSS and 
the cache capacity to mitigate set contention. As mentioned in Section 3.2, using devdax mode to get 
more raw access can reduce set contention. However, we also note that the kernel already provides 
raw access to BAS, so the physical addresses of pages with contiguous kernel virtual addresses are 
also contiguous. Therefore, FusionFS can mitigate set contention without relying on devdax, thus  
providing better support for other BAS devices such as CXL-SSDs. 

Additionally, when FusionFS is mounted on multiple NUMA nodes, FusionFS spreads the file 
data across the kernel threads of different NUMA nodes in a RAID0-like fashion. This allows Fu-
sionFS to use the CPU caches of other NUMA nodes by offloading dedicated-cache updates to 
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kernel threads on those nodes, even if the processes initiating the write calls are running on a 
single NUMA node. Because the data is copied from the local DRAM of the initiating NUMA node 
to the CPU caches of the kernel threads on other NUMA nodes during write operations, it does 
not suffer from BAS’s poor cross-NUMA access performance. With this optimization, FusionFS 
can use the CPU caches of all NUMA nodes to extend the dedicated cache capacity. 

4.2.3 DCA-aware Way Allocation. FusionFS addresses the challenge of I/O contention caused by 
DCA by preferentially allocating cache ways that are not used by DCA for isolated data accesses. 
This approach ensures that incoming I/O traffic that DCA allows to be injected directly into CPU 
caches will not evict cached BAS data without disabling DCA. In fact, disabling DCA does not work 
on monolithic systems and is not feasible for eADR platforms (Section 3.4). While other processes 
and I/O operations share the shareable ways, they are less affected by I/O contention due to the 
higher bandwidth and matched access granularity of DRAM. 
By mitigating DRAM-BAS, set, and  I/O contention and making L3_CAT effective for kernel space, 

FusionFS addresses the limitations of L3_CAT and ensures that the dedicated caches are used 
effectively. In addition, FusionFS can use the CPU caches of all NUMA nodes, allowing more data 
to be stored in the caches. This further reduces the need to access BAS, improving the overall 
performance of the file system. 

5 Evaluation 

In this section, we evaluate the performance of FusionFS and answer the following questions: 

— Can FusionFS leverage the adaptive data update approach to optimize file updates? 
— Can FusionFS effectively mitigate various types of cache contention with contention-aware 
cache allocation? 

— Can FusionFS exhibit optimal performance in application scenarios of system calls and mem-
ory mapping? 

5.1 Evaluation Methodology 

Experimental platform. We perform our evaluation on a server equipped with two 28-core Intel 
Xeon Gold 6348 (42 MB cache), four 128 GB Intel Optane PM, which is a type of BAS, and four 
16 GB DDR4 DRAM on each node. The server is running Linux kernel v5.13.13. 

FusionFS implementation and configuration. We modify and extend the PMFS-based [15] 
ODINFS [71] to design and implement FusionFS. ODINFS is a PM file system that introduces a data 
movement delegation mechanism used in non-PM systems [30, 48, 66], where background threads 
access PM on behalf of applications to limit concurrent PM accesses and use the PM bandwidth 
of multiple NUMA nodes. As a result, FusionFS provides the same level of consistency as PMFS 
and ODINFS, i.e., all metadata operations are synchronous and atomic, and all data operations 
are synchronous but not atomic. Many applications that write to the file system, such as SQLite 
and LevelDB, ensure consistency through their own logging mechanisms and do not require the 
file system to provide atomicity for data updates. If needed, we can extend FusionFS to provide 
atomicity of data operations using logging [33] or  hardware transactional memory (HTM) [60, 
63]. For a fair comparison, no asynchronous updates are used. Unless otherwise mentioned, we 
configure FusionFS to have 12 kernel threads and 21 MB of dedicated cache per NUMA node. 
FusionFS can also be extended with cache management mechanisms [61] to dynamically adjust 
the dedicated cache capacity. 
Target comparisons. We evaluate and compare FusionFS with five file systems: ext4, 

PMFS [15], NOVA [57], WineFS [34], and ODINFS [71]. We configure ext4 with the DAX option and 
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Fig. 8. Throughput, latency, and I/O amplification of evaluated file systems in Fio. 

all other file systems with the default setup. These file systems provide weaker or the same level of 
consistency as FusionFS. Unless otherwise mentioned, all file systems run on a single NUMA node. 

5.2 Micro-benchmarks 

5.2.1 Fio. We evaluate the file write performance of FusionFS using Fio [17], testing both 4 KB 
and 2 MB access sizes with 1 and 8 threads. We vary the Zipf parameter θ to present results with 
localities ranging from 90/10 (90% of accesses go to 10% of data) to 50/50 (uniform distribution). 
We configure fio to let each thread access a 16 MB private file. 

Figure 8 shows the throughput, average latency, and I/O amplification of all file systems evalu-
ated. We report the I/O amplification as the number of bytes written to the underlying BAS media 
divided by the number of bytes issued by the CPUs. For single-threaded 4K writes, FusionFS outper-
forms the throughput of other file systems by an average of 67.4%. FusionFS also shows near-zero 
latency and I/O amplification because the single 16 MB file can fit into dedicated cache capacity. In 
contrast, other file systems have higher latency and I/O amplification around 1 because they flush 
every write to BAS. In particular, ODINFS has significantly lower throughput and higher latency 
due to the communication overhead with kernel threads and the inability to use the BAS band-
width of multiple NUMA nodes when only one node is available, while FusionFS avoids the cache 
coherency overhead and benefits from the high bandwidth of CPU caches. For single-threaded 2M 
writes, the average throughput advantage for FusionFS increases to 343.3% because the offloading 
overhead for large writes is negligible. 
For 8-threaded 4K writes, FusionFS’s performance metrics improve with increasing locality, with 

throughput averaging 42.9% higher than the other filesystems. This is because the size of the eight 
16 MB files far exceeds the dedicated cache capacity, and the higher locality brings a higher prob-
ability that the target data block is located in the CPU caches. For 8-threaded 2M writes, although 
large file sizes and write sizes make random accesses nearly uniformly distributed regardless of 
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Table 2. Summary of Used FxMark Workloads 

Name Description 
DRBL Each thread reads a private block in a private file. 
DRBM Each thread reads a private block in a shared file. 
DRBH Each thread reads a shared block in a shared file. 
DWOL Each thread overwrites a private block in a private file. 
DWOM Each thread writes to a private block in a shared file. 
Each thread repetitively performs the corresponding operations in each workload. 

Fig. 9. Results of FxMark workloads. 

θ , FusionFS throughput is still 33.2% higher on average due to the higher bandwidth and lower 
latency of non-temporal updates compared to active-flush updates used by other file systems. 

5.2.2 FxMark. We use the FxMark [43] workloads described in Table 2 to evaluate the perfor-
mance and scalability of FusionFS data operations. Figure 9 shows the scalability results of the 
evaluated file systems. Among them, PMFS and NOVA can only scale the DRBL workload. Instead, 
FusionFS and ODINFS can scale all the benchmarks with the readers-writer range lock [12]. For 
read workloads, FusionFS and ODINFS are 16.9% slower than PMFS in DRBL. However, they out-
perform other file systems by about 23.2× and 22.8× in DRBM and DRBH, respectively, because 
other file systems are limited by the readers-writer semaphore implementation in the Linux kernel. 

For write workloads, FusionFS outperforms other file systems by about 1.6× and 1.5× on average 
in DWOL and DWOM, respectively. This is because in FusionFS, writing to hot data is likely to hit 
CPU caches, while in other file systems, throughput is limited by BAS bandwidth as they eagerly 
flush the written data to BAS or use non-temporal write instructions to store data. Compared to 
ODINFS, which limits the number of BAS write threads to no more than 8 to avoid performance 
collapse, FusionFS does not limit access to cached data and achieves better scalability. 

5.3 Breakdown Analysis 

We use a Fio workload to investigate the throughput and I/O amplification improvements of each 
of FusionFS’s optimizations when updating cached data under cache contention. The workload 
performs 4 KB I/Os on a 16 MB file with a single thread. We also spawn 8 interfering processes 
and I/O requests as described in Section 3. 
Figure 10 shows the throughput and I/O amplification for the tests. Removing all flushes results 

in a 13.7% decrease in throughput and a 194.4% increase in I/O amplification compared to flush-
ing all data (i.e., PMFS). This is because writes larger than a cacheline can be split into multiple 
cacheline-sized random writes due to the cacheline eviction policy, which does not match the ac-
cess granularity of BAS. Cacheline evictions are further exacerbated by BAS-BAS contention and 
interfering process contention, causing severe write amplification. 
When we start mitigating BAS-BAS contention with adaptive data update, throughput drops 

by 8.5% due to persistence overhead. However, I/O amplification even increases by 7.3% because 
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Fig. 10. Breakdown analysis of FusionFS with Fio workloads as optimizations are gradually enabled. 

cached data is still vulnerable to interfering process contention. This suggests that  adaptive data up-
date alone is not effective in mitigating interfering process contention because there is no guarantee 
that detected hot data is hotter than data from other processes. 
Next, we offload dedicated-cache updates to L3_CAT-protected kernel threads to mitigate interfer-

ing process contention. The  isolated data access optimization allows FusionFS to outperform PMFS 
under cache contention, with throughput increases of 127.2% and I/O amplification reductions of 
87.0%. The associativity-friendly data layout does not significantly change the results because the 
addresses of the files created by Fio in the freshly initialized FusionFS are contiguous and the file 
size is smaller than the dedicated cache capacity. Finally, DCA-aware way allocation further miti-
gates I/O contention by preventing FusionFS from sharing caches with DCA-enabled I/O operations, 
increasing throughput by 25.1% and reducing I/O amplification by 95.2%. 

In summary, combining all optimizations results in a throughput increase of 123.5% and a reduc-
tion in I/O amplification of 98.0%. This indicates that FusionFS’s cached data is virtually immune to 
various types of cache contention and consumes near-zero BAS bandwidth when writing cached 
data due to contention-aware cache allocation. 

5.4 Sensitivity Analysis 

This section describes how I/O size thresholds, kernel thread count, and NUMA node count affect 
FusionFS performance. 
FusionFS with varying I/O sizes. We run Fio workloads to evaluate the performance of dif-

ferent data update mechanisms under different I/O sizes. We generate single-threaded uniform 
random write requests with different I/O sizes ranging from 1 KB to 64 KB. We use a 16 MB file to 
simulate a scenario where BAS accesses can hit CPU caches, and a 1 GB file to simulate a scenario 
where BAS accesses cannot hit CPU caches. 

Figure 11(a) shows the results. In-place updates that hit CPU caches have the best throughput at 
small I/O sizes (≤64KB), and the throughput decreases as the I/O size increases. However, if they 
cannot hit CPU caches due to cache contention, the throughput will be worst due to write amplifi-
cation caused by random cacheline evictions and mismatched access granularities. Dedicated-cache 
updates mitigate interfering process contention, but also incur communication overhead. By apply-
ing a variety of optimizations, they outperform other options under cache contention for I/O sizes 
greater than or equal to 4 KB. Unlike NOVA, which only uses non-temporal updates when the plat-
form does not support clflushopt and clwb, FusionFS prefers non-temporal updates for system 
calls because they always have higher throughput than active-flush updates. For memory mapped 
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Fig. 11. Results of sensitivity analysis. 

cold data, FusionFS flushes data already written to CPU caches into the BAS during synchroniza-
tion calls, so only active-flush updates can be used. 
FusionFS with varying kernel threads. We run a multithreaded Fio workload with 4 KB 

I/O size and 4 KB file size and vary the number of kernel threads to find the optimal number 
for FusionFS’s isolated data access, which is a common practice for data copy offloading [36, 41, 
71, 72]. As Figure 11(b) shows, the throughput approaches saturation at 12 kernel threads and 
continues to increase slightly up to 20 threads. However, beyond 12 threads, the incremental gains 
in throughput are minimal compared to the increase in CPU usage. Therefore, we choose 12 kernel 
threads as the default setup for FusionFS because it balances throughput and CPU usage. 

FusionFS with varying NUMA nodes. Figure 11(c) shows FusionFS’s BAS media writes when 
running the uniform random write Fio workload with different file sizes on different numbers of 
NUMA nodes. When running on two NUMA nodes, the BAS writes begin to increase with larger 
file sizes. The results show that FusionFS can use CPU caches on other NUMA nodes by binding 
kernel threads to them, even if the process that initiated the write call is not on them. 

5.5 Application Benchmarks 

This section tests FusionFS in real-world application scenarios of system calls and memory 
mapping. 

5.5.1 Filebench OLTP. Filebench [53] OLTP contains a single log writer process writing a 10 MB 
log file with an I/O size of 256 KB and multiple database writer/reader processes writing/reading 
a 10 MB data file with an I/O size of 2 KB. We configure OLTP to initiate transactions at a high 
frequency to better match the high performance of BAS. 
Figure 12(a) shows that FusionFS outperforms the second-ranked WineFS by up to 3.4×. This is  

because for 256 KB log writes, FusionFS uses dedicated-cache updates, which are likely to hit CPU 
caches, rather than flushing all writes to BAS as other file systems do, thus taking advantage of the 
high performance of CPU caches. For 2 KB database writes, FusionFS uses non-temporal updates to 
avoid the performance degradation typically associated with small I/O sizes. In addition, FusionFS 
achieves good scalability with the readers-writer range lock, which ensures efficient concurrent 
access within the same file. 

5.5.2 TPC-C on SQLite. SQLite [51] is a lightweight database that stores data in a single B+-
Tree file, with other auxiliary files for logging. We run the OLTP benchmark TPC-C on SQLite in 
Write-Ahead-Logging (WAL) mode, which contains three types of files: the main database files 
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Fig. 12. Results of application benchmarks. 

(~350 MB), WAL files (~4 MB), and memory mapped SHM files (~32 KB). The I/O size for write calls 
is 4 KB. 
Figure 12(b) shows that FusionFS outperforms other file systems by up to 2.0× in the TPC-C 

on SQLite workload by adaptively choosing the most appropriate data update mechanism for the 
access pattern. While 4 KB writes to the main database files can be offloaded to kernel threads, the 
lower locality due to the larger file size compared to Filebench OLTP leads FusionFS to use non-
temporal updates for these writes. In contrast, the high access frequency of the WAL files allows 
FusionFS to use dedicated-cache updates to store the data CPU caches. 

5.5.3 Kyoto Cabinet ( KC). KC [39] is a database library that stores the database in a single 
file. KC memory maps the first 64 MB of the file and frequently calls msync to ensure that updates 
to memory-mapped data are persistent. KC also uses write system calls to append new records to 
the file and uses WAL to provide failure atomicity. We issue sequential SET requests to KC from a 
single thread for 30 seconds. The key size is 8 B and the value size is 1 KB. 
Figure 12(c) shows that FusionFS outperforms other file systems with a throughput of 184.6 K 

ops/sec. This is because other file systems iterate over each page within the msync range and use 
a series of flush instructions followed by a memory fence to ensure that the data is flushed to 
BAS. However, KC synchronizes the entire file even if only a small portion of the file is modified, 
which introduces unnecessary flushes and memory fences that degrade performance. NOVA shows 
the second best performance because it uses generic_file_fsync without flushing data to BAS. 
Unlike them, FusionFS uses in-place updates for the hot header and data, and batches full-file syncs 
within a second to reduce the overhead of frequent msync calls. In addition, FusionFS’s page fault-
based profiling mechanism can detect the hot data during mmap without any code changes to KC. 

5.5.4 Lightning Memory-mapped Database Manager ( LMDB). LMDB [52] is a B-
Tree-based database library. Unlike KC, LMDB memory maps the entire database, so that all 
data accesses directly load and store the mapped memory region and ensures atomicity with 
copy-on-write. LMDB also synchronizes the entire file during msync, regardless of the mmap 
write range. We repeat the same workload as KC to evaluate the performance of FusionFS with 
pure mmap. Figure 12(c) shows that FusionFS outperforms other file systems with a throughput 
of 352.9 K ops/sec. This is because FusionFS uses in-place updates for hot data and batches full-file 
syncs within a second. 

5.6 Emulated CXL-SSD Performance 

We re-run the Fio workload in Section 5.3 to evaluate the performance of FusionFS on emulated 
CXL-SSDs. Similar to existing work [3, 40, 42], we emulate CXL-SSDs using Optane PM on a 
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Fig. 13. Throughput, latency, and I/O amplification of evaluated file systems on emulated CXL-SSDs with 
different access granularities. 

remote NUMA node because they are not yet in mass production and their access latency is com-
parable to the remote latency on a dual-socket system. Previous studies [59, 65] also indicate that 
CXL-SSDs have 16 KB access granularity. Therefore, when flushing data from CPU caches to the 
emulated CXL-SSDs, if the flush size is not an integer multiple of the BAS granularity, we adjust 
it to the nearest larger multiple. We then symbolically modify 1 byte for each cacheline within 
the aligned region and revert back to ensure that the entire region is marked as dirty and flushed 
to BAS. Based on previous experiments, FusionFS’s cached data is virtually immune to cache con-
tention, so we only consider write amplification caused by explicit flushes and ignore write am-
plification caused by random cache evictions. To further validate the versatility of FusionFS, we 
test access granularities of 64 B, 256 B, and 4 KB, corresponding to DRAM, Optane PM, and SSD, 
respectively, in addition to 16 KB. 
Figure 13 shows that FusionFS achieves optimal performance regardless of access granularity. 

This is because FusionFS stores hot data in persistent CPU caches, protecting it from cache con-
tention, and writes to the BAS only when the data gets cold. ODINFS, on the other hand, eagerly 
flushes all data to PM. While this makes it immune to random cache evictions, it will inevitably 
suffer from write amplification if the access granularity is larger than the write size (e.g., 16 KB). 
For BAS with 64 B access granularity (e.g., battery-backed memory), flush instructions can be 
safely omitted because random cache evictions do not cause write amplification. However, avoid-
ing cache contention still helps reduce data movement between caches and the BAS, thus saving 
scarce BAS bandwidth. In addition, we find that the increased latency of CXL has minimal impact 
on kernel file systems that require system calls. 

6 Discussion and Related Work 

To the best of our knowledge, this is the first work to identify, characterize, and propose solutions 
to different types of cache contention for BAS systems, and the first to use L3_CAT to mitigate 
contention for persistent CPU caches and address its challenges. We first discuss the generality of 
our work and its applicability to other BAS devices, persistent CPU cache implementations, and 
BAS systems. We then compare FusionFS to related work. 
Applicability to other BAS devices and persistent CPU cache implementations. Our im-

plementation of FusionFS is based on Intel Optane PM and eADR, which is a type of BAS and 
its persistent CPU cache implementation. Although Intel has discontinued its Optane product, re-
search on it is still useful. There are two main reasons for this. First, there is an obvious need 
for new storage technologies to bridge the gap between DRAM and SSD [7, 69]. Other BAS prod-
ucts such as CXL-SSDs [49, 59] are promising solutions. Second, the development of FusionFS is 
guided by the general byte-addressability and durability characteristics of BAS, rather than being 
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customized for a specific BAS device. As discussed in Section 5.6, FusionFS achieves good per-
formance across BAS devices with different access granularities and latency characteristics, and 
avoiding cache contention is still beneficial with matched access granularity. 
Our findings can also be applied to other persistent CPU cache implementations. CXL 3.0 [10] 

introduces the hardware-based Global Persistent Flush (GPF) to provide functionality similar 
to eADR. Battery-Backed Buffer [1] uses batteries to make caches persistent. These alternatives 
also suffer from the same cache contention problems as eADR. 

Applicability to other BAS systems. The ideas of FusionFS can be applied to other types 
of BAS systems, such as userspace file systems, key-value stores, and indexes. For example, in 
userspace file systems (e.g., HTMFS [60]), we can minimize cache pollution from cold data by 
choosing active-flush updates for cold data. Since flushes cause HTM transactions to abort, we can 
ensure HTM compatibility by delaying flushes until transactions are complete. In addition, we can 
use contention-aware cache allocation to protect cached data from cache contention. 

The Exploration of Persistent CPU Caches. Researchers have been looking for ways to op-
timize BAS systems with persistent CPU caches. Gugnani [18] proposes lock-free algorithms for 
linked lists and ring buffers based on atomic CPU hardware primitives. NBTree [62, 64] is a lock-
free persistent B+-Tree designed for eADR-enabled platforms. HTMFS [60] and Spash [63] use  
HTM to simplify concurrency control and provide strong consistency at a low cost. Falcon [33] 
maintains a reusable log window in persistent CPU caches. In terms of cache contention, Fal-
con [33] and Spash [63] selectively flush cold data to mitigate BAS-BAS contention. CacheKV  [70] 
redesigns LSM-Tree’s MemTables to optimize its write performance with persistent CPU caches, 
but it uses unsupported Cache Pseudo-Locking without verifying its effectiveness and, therefore, 
cannot mitigate interfering process contention. In contrast, FusionFS (1) mitigates various types of 
cache contention to use persistent CPU caches as a dedicated storage medium, (2) uses L3_CAT to 
effectively mitigate interfering process contention instead of unsupported Cache Pseudo-Locking, 
(3) optimizes memory mapping accesses through page fault-based profiling, and (4) uses range 
locks for concurrency control instead of relying on HTM, which has security vulnerabilities and 
is disabled by default [37]. 

7 Conclusions 

Persistent CPU caches can mitigate the shortcomings of BAS in terms of data flushing and access 
granularity. However, the shared nature of CPU caches can lead to cache contention, negating the 
benefits of caching and even leading to write amplification. In this article, we identify, characterize, 
and propose solutions to persistent CPU cache contention. We also propose FusionFS, a contention-
resilient kernel file system that uses persistent CPU caches to redesign data update approaches. Fu-
sionFS employs an adaptive data update approach that chooses the most effective mechanism based 
on file access patterns during system calls and memory mapping accesses. FusionFS also employs 
contention-aware cache allocation to mitigate various types of cache contention. Performance re-
sults show that FusionFS outperforms existing file systems and effectively mitigates various types 
of cache contention. 
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